The Nature and Properties of Soils Thirteenth Edition

NYLE C. BRADY

RAY R. WEIL

The Nature and Properties of Soils

THIRTEENTH EDITION

NYLE C. BRADY

EMERITUS PROFESSOR OF SOIL SCIENCE CORNELL UNIVERSITY

RAY R. WEIL

PROFESSOR OF SOIL SCIENCE UNIVERSITY OF MARYLAND AT COLLEGE PARK

> Pearson Education Australia, Phy Lud. Pearson Education Singapare, Phy. Lud. Pearson Education North Asia, Lud. Pearson Education Canada, Lud. Pearson Education—Japan Pearson Education—Japan Pearson Education—Japan

BIBLIOTE

Copyright (22002, 1999, 1996 by Pearson Education, Inc., Upper Saddle Kiver, New Jersey 07158. All rights reserved. Fortext of tates of America, this publication is protected by Copyright and permission should be obtained from the publisher prior by an eproduction, storage in a retrieval system, or trajtantision in any form or by any means, electronic, mechanical, photocopying be lewine. For information regarding permission(), write for Rights and Permission Department.

Earlier editions by T. Lyttleton Lyon and Harry O. Buckman copyright 1932, 1932, 1937, and 1943 by Macmittan Publishing Co. edition by T. Cyttleton, Harry O. Buckman, and Kyle C. Brady copyright 1952 by Macmillan Publishing Co., Inc. Earlier Harry O. Buckman and Nyle C. Brady copyright © 1960 and 1969 by Macmillan Publishing Co., Inc. Copyright enneyed Bertha C. Lyon and Harry O. Buckman, 1957 and 1965 by Harry O. Buckman, 1961 by Rita S. Buckman, Earlier editionally N.

UPPER SADDLE RIVER, NEW JERSEY 07458

ALD-EL-O MEZI

CONTENTS

PREFACE XV

L

2

THE	Soils A	AROUND US I	
	1.1	Functions of Soils in Our Ecosystem	2
	1.2	Medium for Plant Growth	3
	1.3	Regulator of Water Supplies	6
	1.4	Recycler of Raw Materials	7
	1.5	Habitat for Soil Organisms	7
	1.6	Engineering Medium	8
	1.7	Soil as Environmental Interface	9
	1.8	Soil as a Natural Body	10
	1.9	The Soil Profile and Its Layers (Horizons)	11
	1.10	Topsoil and Subsoil	15
	1.11	Soil: The Interface of Air, Minerals, Water, and Life	17
	1.12	Mineral (Inorganic) Constituents of Soils	18
	1.13	Soil Organic Matter	20
	1.14	Soil Water: A Dynamic Solution	21
	1.15	Soil Air: A Changing Mixture of Gases	23
	1.16	Interaction of Four Components to Supply Plant Nutrients	24
	1.17	Nutrient Uptake by Plant Roots	26
	1.18	Soil Quality, Degradation, and Resilience	27
	1.19	Conclusion	29
		Study Questions	29
		References	30
FORM	ATION	OF SOILS FROM PARENT MATERIALS 31	
	2.1	Weathering of Rocks and Minerals	31
	2.2	Physical Weathering (Disintegration)	36
	2.3	Biogeochemical Weathering	36
	2.4	Factors Influencing Soil Formation	39

2.5	Parent Materials	40
2.6	Residual Parent Material	42
2.7	Colluvial Debris	42
2.8	Alluvial Stream Deposits	42
2.9	Marine Sediments	45
2.10	Parent Materials Transported by Glacial Ice and Meltwaters	46
2.11	Parent Materials Transported by Wind	49
2.12	Organic Deposits	52
2.13	Climate	54
2.14	Biota: Living Organisms	54
2.15	Topography	61
2.16	Time	62
2.17	Four Basic Processes of Soil Formation	64
2.18	The Soil Profile	69
2.19	Conclusion	73
	Study Questions	73
	References	74

3 SOIL CLASSIFICATION 75

3.1	Concept of Individual Soils	76
3.2	Comprehensive Classification System: Soil Taxonomy	79
3.3	Categories and Nomenclature of Soil Taxonomy	84
3.4	Soil Orders	86
3.5	Entisols (Recent: Little If Any Profile Development)	88
3.6	Inceptisols (Few Diagnostic Features: Inception of B Horizon)	92
3.7	Andisols (Volcanic Ash Soils)	93
3.8	Gelisols (Permafrost and Frost Churning)	94
3.9	Histisols (Organic Soils without Permafrost)	96
3.10	Aridisols (Dry Soils)	98
3.11	Vertisols (Dark, Swelling and Cracking Clays)	100
3.12	Mollisols (Dark, Soft Soils of Grasslands)	103
3.13	Alfisols (Argillic or Natric Horizon, Medium to High Bases)	105
3.14	Ultisols (Argillic Horizon, Low Bases)	107
3.15	Spodosols (Acid, Sandy, Forest Soils, Low Bases)	109
3.16	Oxisols (Oxic Horizon, Highly Weathered)	110
3.17	Lower-Level Categories in Soil Taxonomy	111
3.18	Conclusion	118
	Study Questions	119
	References	119

4 SOIL ARCHITECTURE AND PHYSICAL PROPERTIES 121

4.1	Soil Color	122
4.2	Soil Texture (Size Distribution of Soil Particles)	123
4.3	Soil Textural Classes	127
4.4	Structure of Mineral Soils	133
4.5	Soil Density	136
4.6	Pore Space of Mineral Soils	147
4.7	Formation and Stabilization of Soil Aggregates	152
4.8	Tillage and Structural Management of Soils	160
4.9	Soil Properties Relevant to Engineering Uses	165
4.10	Conclusion	172
	Study Questions	173
	References	174

5 SOIL WATER: CHARACTERISTICS AND BEHAVIOR 176

5.1	Structure and Related Properties of Water	177
5.2	Capillary Fundamentals and Soil Water	180
5.3	Soil Water Energy Concepts	183
5.4	Soil Water Content and Soil Water Potential	187
5.5	The Flow of Liquid Water in Soil	195
5.6	Infiltration and Percolation	200
5.7	Water Vapor Movement in Soils	204
5.8	Qualitative Description of Soil Wetness	205
5.9	Factors Affecting Amount of Plant-Available Soil Water	210
5.10	Mechanisms by Which Plants Are Supplied with Water	213
5.11	Conclusion	215
	Study Questions	216
	References	217

6 SOIL AND THE HYDROLOGIC CYCLE 219

6.1	The Global Hydrologic Cycle	220
6.2	Fate of Precipitation and Irrigation Water	222
6.3	The Soil–Plant–Atmosphere Continuum	228
6.4	Efficiency of Water Use	233
6.5	Control of Evapotranspiration (ET)	235
6.6	Control of Surface Evaporation (E)	236
6.7	Liquid Losses of Water from the Soil	240
6.8	Percolation and Groundwaters	243
6.9	Enhancing Soil Drainage	247
6.10	Septic Tank Drain Fields	258
6.11	Irrigation Principles and Practices	261
6.12	Conclusion	269
	Study Questions	270
	References	271

7 SOIL AERATION AND TEMPERATURE 272

7.1	Soil Aeration—The Process	273
7.2	Means of Characterizing Soil Aeration	274
7.3	Oxidation-Reduction (Redox) Potential	277
7.4	Factors Affecting Soil Aeration	280
7.5	Ecological Effects of Soil Aeration	283
7.6	Aeration in Relation to Soil and Plant Management	286
7.7	Wetlands and Their Poorly Aerated Soils	287
7.8	Processes Affected by Soil Temperature	294
7.9	Absorption and Loss of Solar Energy	301
7.10	Thermal Properties of Soils	305
7.11	Soil Temperature Control	309
7.12	Conclusion	313
	Study Questions	313
	References	314

8 SOIL COLLOIDS: SEAT OF SOIL CHEMICAL AND PHYSICAL ACTIVITY 316

8.1	General Properties and Types of Soil Colloids	31
8.2	Fundamentals of Layer Silicate Clay Structure	32
8.3	Mineralogical Organization of Silicate Clays	324
8.4	Structural Characteristics of Nonsilicate Colloids	329

		and the second second
8.5	Genesis and Geographic Distribution of Soil Colloids	333
8.6	Sources of Charges on Soil Colloids	336
8.7	Adsorption of Cations and Anions	339
8.8	Cation Exchange Reactions	341
8.9	Cation Exchange Canacity	345
810	Exchangeable Cations in Field Soil	240
0.10	Asian Fachanana	349
8.11	Anion Exchange	352
8.12	Sorption of Pesticides and Groundwater Contamination	354
8.13	Binding of Biomolecules to Clay and Humus	355
8.14	Physical Implications of Swelling-Type Clavs	357
8.15	Environmental Uses of Swelling-Type Clays	358
816	Conclusion	250
0.10	Study Questions	359
	Study Questions	360
	Keterences	361
9 SOIL ACIDI	TY 363	
e een riener		
9.1	The Process of Soil Acidification	364
9.2	Role of Aluminum in Soil Acidity	369
9.3	Pools of Soil Acidity	369
94	Buffering of pH in Soile	374
0.5	Dateming of print Solis	5/4
9.5	Determination of Soil pH	3//
9.6	Human-Influenced Soil Acidification	380
9.7	Biological Effects of Soil pH	387
9.8	Raising Soil pH by Liming	394
9.9	Alternative Ways to Ameliorate the III Effects of Soil Acidity	400
910	Lowering Soil nH	103
011	Coloium and Magnasium as Plant Nutriante	403
9.11	Calcium and Magnesium as Plant Nutrients	404
9.12	Conclusion	408
	Study Questions	409
	References	410
10 Sous of	DEV REGIONS: ALVALINITY SALINITY AND SODICITY 413	
TO JOILS OF	DRT REGIONS. ALKALINITY, SALINITY, AND SODICITY 412	
10.1	Causes of Alkalinity: High Soil pH	413
10.2	Characteristics and Problems of Alkaline Soils	415
103	Development of Salt Affected Soils	410
10.5	Measuring Colimits and Codicity	419
10.4	Measuring Salinity and Sodicity	422
10.5	Classes of Salt-Affected Soils	426
10.6	Growth of Plants on Salt-Affected Soils	430
10.7	Water-Quality Considerations for Irrigation	434
10.8	Reclamation of Saline Soils	436
10.9	Reclamation of Saline-Sodic and Sodic Soils	441
10.10	Management of Paglaimed Soils	445
10.10	Conductor	445
10.11	Conclusion	445
	Study Questions	446
	References	447
11 OPCANICA	IS AND ECOLOGY OF THE SOLL 140	
TI OKGANISM	IS AND ECOLOGY OF THE SOIL 449	
11.1	The Diversity of Organisms in the Soil	450
11.2	Organisms in Action	450
11.2	Organism Abundance Rieman and Matchelis Astrictor	452
11.5	Fasteres	45/
11.4	Earthworms	459
11.5	Ants and lermites	463
11.6	Soil Microanimals	466
11.7	Roots of Higher Plants	470

11.8	Soil Algae	473
11.9	Soil Fungi	473
11.10	Soil Bacteria	481
11.11	Soil Actinomycetes	482
11.12	Conditions Affecting the Growth of Soil Microorganisms	483
11.13	Beneficial Effects of Soil Organisms	484
11 14	Soil Organisms and Damage to Higher Plants	487
11.15	Ecological Relationships Among Soil Organisms	490
11.16	Genetically Engineered Microorganisms	493
11.17	Conclusion	495
11.17	Study Questions	495
	References	495
	nere ence	

12 SOIL ORGANIC MATTER 498

12.1	The Global Carbon Cycle	498
12.2	The Process of Decomposition in Soils	501
123	Factors Controlling Rates of Decomposition and Mineralization	505
12.0	Humus: Genesis and Nature	512
12.5	Composts and Composting	515
12.6	Direct Influences of Organic Matter on Plant Growth	518
12.0	Influence of Organic Matter on Soil Properties and the Environment	519
12.7	Management of Amount and Quality of Soil Organic Matter	521
12.0	Carbon Balance in the Soil-Plant-Atmosphere System	524
12.0	Eactors and Practices Influencing Soil Organic Matter Levels	526
12.10	Soile and the Greenhouse Effect	533
12.11	Organia Saile (Histogole)	537
12.12	Organic Sons (Histosons)	539
12.13	Conclusion	540
	Study Questions	541
	Keterences	541

13 NITROGEN AND SULFUR ECONOMY OF SOILS 543

131	Influence of Nitrogen on Plant Growth and Development	544
13.1	Origin and Distribution of Nitrogen	546
13.2	The Nitrogen Cycle	546
13.5	Immobilization and Mineralization	546
12.5	Soluble Organic Nitrogen	549
13.5	Ammonium Fixation by Clay Minerals	550
13.0	Ammonia Valatilization	551
13./	Nitrification	552
15.0	The Nitrate Leading Droblem	553
13.9	The Nitrate Leaching Problem	559
13.10	Gaseous Losses by Denitrification	564
13.11	Biological Nitrogen Fixation	566
13.12	Symbiotic Fixation with Legumes	570
13.13	Symbiotic Fixation with Nonlegumes	570
13.14	Nonsymbiotic Nitrogen Fixation	572
13.15	Addition of Nitrogen to Soil in Precipitation	5/2
13.16	Reactions of Nitrogen Fertilizers	5/3
13.17	Practical Management of Soil Nitrogen in Agriculture	5/4
13.18	Importance of Sulfur	5/5
13.19	Natural Sources of Sulfur	578
13.20	The Sulfur Cycle	581
13.21	Behavior of Sulfur Compounds in Soils	583
13.22	Sulfur Oxidation and Reduction	584
13.23	Sulfur Retention and Exchange	586

13.24	Sulfur and Soil Fertility Maintenance	587
13.25	Study Questions	580
	References	590
		550
14 SOIL PHOS	PHORUS AND POTASSIUM 592	
14.1	Role of Phosphorus in Plant Nutrition and Soil Fertility	593
14.2	Effects of Phosphorus on Environmental Quality	595
14.3	The Phosphorus Cycle	601
14.4	Organic Phosphorus in Soils	604
14.5	Inorganic Phosphorus in Soils	606
14.6	Solubility of Inorganic Phosphorus in Acid Soils	609
14.7	Inorganic Phosphorus Availability at High pH Values	612
14.8	Phosphorus-Fixation Capacity of Soils	613
14.9	Plant Genetics and Phosphorus Availability	618
14.10	Practical Control of Phosphorus in Soils	619
14.11	Potassium: Nature and Ecological Roles	621
14.12	Potassium in Plant and Animal Nutrition	622
14.13	The Potassium Cycle	623
14.14	The Potassium Problem in Soil Fertility	627
14.15	Forms and Availability of Potassium in Soils	629
14.16	Eactors Affecting Potassium Eixation in Soils	631
14.17	Practical Aspects of Potassium Management	633
14 18	Conclusion	634
01211110	Study Questions	635
	References	635
943 811	Calcium and Magnesium is Plant Netrients (activitiant) and magnesium is Plant Netrients	
15 MICRONUT	RIENTS AND OTHER TRACE ELEMENTS 638	
15.1	Deficiency Versus Toxicity	639
15.2	Role of the Micronutrients	640
15.3	Source of Micronutrients	642
15.4	General Conditions Conducive to Trace Element Deficiency/Toxicity	644
15.5	Factors Influencing the Availability of the Trace Element Cations	646
15.6	Organic Compounds as Chelates	651
15.7	Factors Influencing the Availability of the Trace Element Anions	654
15.8	Need for Nutrient Balance	660
15.9	Trace Element Cleanup and Metal Hyperaccumulators	662
15.10	Soil Management and Micronutrient Needs	662
15.11	Conclusion	666
	Study Questions	667
	References	667
16 PRACTICAL	NUTRIENT MANAGEMENT 669	
161	Goals of Nutrient Management	670
16.2	Environmental Quality	673
16.3	Nutrient Resources and Cycles	684
16.4	Recycling Nutrients through Animal Manures	690
16.5	Industrial and Municipal By-Products	696
16.6	Practical Utilization of Organic Nutrient Sources	701
16.7	Inorganic Commercial Fertilizers	703
16.8	Fertilizer Application Methods	710
16.9	Timing of Fertilizer Application	715
16.10	Diagnostic Tools and Methods	716
16.11	Soil Analysis	720
10.11	our runnyolo	120

16.12	Site-Specific Nutrient Management	725
16.13	Site-Index Approach to Phosphorus Management	727
16.14	Broader Aspects of Fertilizer Practice	733
16.15	Canducian	736
10.15	Conclusion	736
	Study Questions	750
	References	131
17 Can Fran		
I / SOIL EROS	ION AND ITS CONTROL 740	
17.1	Significance of Soil Erosion and Land Degradation	741
17.2	On-Site and Off-Site Effects of Accelerated Soil Erosion	745
17.3	Mechanics of Water Erosion	750
174	Models to Predict the Extent of Water-Induced Erosion	753
17.5	Factors Affecting Interrill and Rill Erosion	754
17.5	Concernation Tillage	763
17.0	Vesetative Demiana	768
17.7	vegetative barriers	700
17.8	Control of Gully Erosion and Mass Wasting	770
17.9	Control of Accelerated Erosion on Range and Forest Land	112
17.10	Erosion and Sediment Control on Construction Sites	115
17.11	Wind Erosion: Importance and Factors Affecting It	779
17.12	Predicting and Controlling Wind Erosion	783
17.13	Land Capability Classification as a Guide to Conservation	787
17.14	Progress in Soil Conservation	789
17.15	Paol Value of Soil Conservation	792
17.15	Conducion	703
17.10	Conclusion	703
	Study Questions	795
	References	/94
18 SOILS AND	CHEMICAL POLILITION 796	
10 001207012		707
18.1	Ioxic Organic Chemicals	191
18.2	Kinds of Organic Contaminants	800
18.3	Behavior of Organic Chemicals in Soil	801
18.4	Effects of Pesticides on Soil Organisms	808
18.5	Remediation of Soils Contaminated with Organic Chemicals	810
18.6	Contamination with Toxic Inorganic Substances	818
187	Potential Hazards of Chemicals in Sewage Sludge	821
10.7	Posetions of Inorganic Contaminants in Soils	823
10.0	Demonstrian and Elimination of Inorganic Chamical Contamination	825
18.9	Prevention and Elimination of morganic Chemical Contamination	025
18.10	Landfills	027
18.11	Radionuclides in Soil	832
18.12	Radon Gas from Soils	834
18.13	Conclusion	837
	Study Questions	837
	References	837
19 GEOGRAP	HIC SOILS INFORMATION 840	
191	Soil Spatial Variability in the Field	840
10.1	Techniques and Tools for Manning Soils	845
10.2	Madarn Tachnology for Sail Investigations	849
19.3	Principal Canada and Sola for Calla Investigations	950
19.4	kemote sensing loois for Solis investigations	050
19.5	Air Photos	852
19.6	Satellite Imagery	856
19.7	Soil Surveys	859
19.8	The County Soil Survey Report and Its Utilization	861
19.9	Geographic Information Systems	863
19.10	GIS, GPS, and Site-Specific Agriculture	866
	and sous, might one ware requerts, biomorecone fillight	Se con treatment
		Co

19.11	Conclusion	869
	Study Questions	869
	References	869
20 GLOBAL S	DIL QUALITY AS AFFECTED BY HUMAN ACTIVITIES 871	
20.1	The Concept of Soil Quality/Soil Health	872
20.2	Soil Resistance and Resilience	876
20.3	Sustaining Biological Productivity	877
20.4	The Population Explosion	878
20.5	Intensified Agroecosystems—The Green Revolution	879
20.6	Effects of Intensified Agroecosystems on Soil Quality or Health	
20.7	Forced Production Intensification	884
20.8	Prospects for the Future	887
20.9	Modified Intensive Agroecosystems	890
20.10	Improving Low-Yielding Agricultural Systems	893
20.11	Improving Soil Quality in sub-Saharan Africa	893
20.12	Improving Soil Quality in Asia and Latin America	899
20.13	Conclusion	900
	Study Questions	900
	References	901

APPENDIX A CANADIAN AND FAO SOIL CLASSIFICATION SYSTEMS 903

APPENDIX B SI UNITS, CONVERSION FACTORS, AND PERIODIC TABLE OF THE ELEMENTS 907

GLOSSARY 911

INDEX 937

xiv	CONTENTS	